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A nonlinear analysis of BBnard-Marangoni convection in a horizontal fluid layer of 
infinite extent is proposed. The nonlinear equations describing the fields of tempera- 
ture and velocity are solved by using the Gorkov-Malkus-Veronis technique, which 
consists of developing the steady solution in terms of a small parameter measuring 
the deviation from the marginal state. This work generalizes an earlier paper by 
Schliiter, Lortz & Busse wherein only buoyancy-driven instabilities were handled. In  
the present work both buoyancy and temperature-dependent surface-tension effects 
are considered. The band of allowed steady states of convection near the onset of 
convection is determined as a function of the Marangoni number and the wavenumber. 
The influence of various dimensionless quantities like Rayleigh, Prandtl and Biot 
numbers is examined. Supercritical as well as subcritical zones of instability are 
displayed. It is found that hexagons are allowable flow patterns. 

1. Introduction 
It is a well-known fact that the onset of convection in BBnard’s (1900) experiments 

is produced not simply by buoyancy forces but primarily by variations of the surface 
tension with the temperature. The latter effect is generally referred to in the literature 
under the name of thermocapillary or Marangoni instability. It was confirmed by 
Block’s (1956) experimental and Pearson’s (1958) analytical studies. I n  Pearson’s 
theoretical model, gravity effects are ignored. Pearson’s work was complemented by 
Nield (1964), Scriven & Sternling (1964) and Lebon & Perez-Garcia (1978), who 
included both mechanisms of instability. All of these analyses assumed infinitesimal 
small-amplitude disturbances and were unable to predict the form of the horizontal 
planform and the amplitude of the convective motion. 

The role of the finite-amplitude perturbations can be handled within global energy 
methods h la Serrin-Joseph (Serrin 1959 ; Joseph 1966). This has been achieved among 
others by Davis (1969), Davis & Homsy (19801, Lebon & Perez-Garcia (1978) and 
Lebon & Cloot (1982). But, as in the case of the linear approach, the shape and the 
size of the cells observed beyond the critical point remain still undetermined. 

Gaining information about the geometry of the convective cells requires a nonlinear 
analysis. The first nonlinear theory of.Marangoni’s problem is that of Scanlon & Segel 
(1967). Their model, however, is very rough: the layer is assumed to be infinitely deep, 
the Rayleigh number is zero and the Prandtl number is infinite. Scanlon & Segel use 
a successive approximation technique based on Stuart’s (1960) method and predict 
the emergence of stable hexagonal cells a t  the onset of Convection. Another nonlinear 
approach is due to Kraska & Sani (1979), whose results were not very convincing 
(Rosenblat, Davis & Homsy 1982). To our knowledge, the only other nonlinear 
analysis is that  proposed recently by Rosenblat et al. (1982). These authors study 
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Marangoni convection in cylindrical and rectangular containers of finite extent. Their 
technique consists of expanding the field variables in series of eigenfunctions of the 
linear stability problem with time-dependent amplitudes. They conclude that 
hexagonal cells cannot appear in small-sized containers. It must, however, be 
observed that these results have been reached under some simplifying restrictions like 
a zero Rayleigh number, a zero Biot number and the no-slip condition replaced by 
a zero tangential vorticity along the sidewall boundaries. 

I n  the present work, a different nonlinear approach is proposed. A layer of infinite 
extent is considered and our aim is to derive the three-dimensional steady solutions 
governing the problem near the onset of convection. Emphasis is placed on the 
interaction between buoyancy and surface-tension effects. The Biot number as well 
as the Prandtl number may take non-zero and finite values. We differ also from 
Rosenblat et al. in the technique utilized to solve the nonlinear field equations. The 
present analysis is carried out by using a successive approximation scheme suggested 
independently by Gorkov (1957) and Malkus & Veronis (1958). This technique has 
been applied with success by Schliiter, Lortz & Busse (1965) to  the Rayleigh-BBnard 
problem, without surface-tension effects. 

We restrict our considerations to weakly nonlinear interactions : in particular, 
nonlinear effects beyond the second-order approximation are omitted. Other simpli- 
fying assumptions are also introduced : the Boussinesq approximation is applied, the 
top free surface of the fluid is flat and non-deformable, non-inertial effects, like 
rotation, are omitted. 

The basic equations and the Gorkov-Malkus-Veronis method are summarized in 
$2. The linearized problem provides the first step in any stability theory and is 
recalled in 93. Steady solutions to the nonlinear problem are derived in $4, where 
second-order approximations are obtained. However, i t  turns out that there still 
remain an infinite number of steady solutions. I n  order to  distinguish which of them 
are physically preferred, we examine their stability with respect to disturbances of 
infinitesimal size. The stability analysis is presented in 95, where disturbances are 
assumed to be of the same nature as the steady solutions. Since experimental 
observations indicate that the latter are either rolls or hexagons, we have restricted 
our analysis to these two kinds of planform. In  $6 we study the stability of the basic 
solutions with respect to  perturbations of different na.ture, i.e. rolls with respect to 
hexagons and vice versa. The stability proof is completed in $ 7  by considering 
disturbances with wavenumbers different from the wavenumber of the reference 
solution. The numerical results are presented and discussed in $8, while a comparison 
with other theoretical models and experimental observations can be found in $9. 

2. The basic equations and the Gorkov-Malkus-Veronis method 
The system analysed is a horizontal viscous fluid layer, of thickness d,  infinite in 

lateral extent, bounded on the bottom by a flat solid surface and on the top by an 
ambient gas. The upper free surface is assumed to remain flat and undeformable. This 
appears to be a reasonable hypothesis because shape deformations play a negligible 
role in convective instabilities as confirmed by several analyses (e.g. Smith 1966; 
Kraska & Sani 1979; Davis & Homsy 1980). The fluid is either heated from below 
or cooled a t  the upper surface by evaporation. In  the basic state, the fluid is at rest 
with a steady temperature drop AT between the bottom and top surfaces. A Cartesian 
coordinate system with horizontal axes located in the lower plane and a vertical axis 
pointing upwards is introduced. The spatial coordinates x, y, z,  the time t ,  the velocity 
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u(u, v ,  w) and the temperature are non-dimensionalized by dividing them by d ,  d 2 / X ,  
X l d  and AT respectively, where x is the thermal diffusivity of the fluid. Within the 
Boussinesq approximation, the velocity field u(u, v, w) and the temperature deviation 
8 from the linear quiescent state satisfy the relations (Scanlon & Segel 1967) 

a,B+u.ve = w + v w ,  
where 

v = (ax,ay,az), v; = a,,+a,,, v2 = v;+a,,, Q = axv-aYu;  
Q is the vertical component of the vorticity, subscripts t ,  x, y, z denote partial 
derivation with respect to  the corresponding variables, P and Ra are the Prandtl and 
Rayleigh numbers, defined respectively by 

U ag AT d3 

X V X  

where a is the coefficient of thermal expansion, g the acceleration due to  gravity and 
u the kinematic viscosity. 

P = - ,  R a =  

The relevant boundary conditions are: a t  the solid bottom surface z = 0 

u = o ,  B = O ,  (2.5), (2.6) 

while at the upper free surface z = 1 

= a Z z w - ~ a y o  = 0, a,e+he = 0. (2.77, (2.8) 

Relations (2.5) and (2.6) express that a t  the bottom there is no slip and that the 
surface is a perfect heat conductor. Expressions (2.7) are the boundary conditions 
for a flat surface subject to a temperature-dependent surface tension, Ma is the 
Marangoni number, given by 

(a[/aT) A T d  

P X  
M a = -  1 

where is the surface tension, generally a decreasing function of the temperature, 
and p the density. Finally, (2.8) represents the thermal boundary condition a t  the 
free surface, h is the Biot heat-transfer coefficient in the fluid near the surface. 

The limiting cases h = 0 and h = 00 describe respectively an adiabatically insu- 
lated and a perfectly heat-conducting surface. 

Our objective is to determine the steady solutions of the eigenvalue problem set 
up by (2.1)-(2.8) in the immediate vicinity of the marginal Marangoni number M(O) 
corresponding to the onset of convection. This task is achieved by expanding the field 
quantities (u, 8)  and the Marangoni number in powers of a small parameter E :  

Substituting (2.10) in (2.1)-(2.8) and equating the different powers of E yields a 
hierarchy of inhomogeneous differential equations. It is shown in the following 
sections that E remains very small (lo-' < E < lO-l), so that i t  is reasonable to restrict 
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the analysis to the second order of approximation. A detailed discussion of the 
validity of this approximation is found in 98. 

As mentioned in J 1, the preferred form of convection is determined by examining 
the stability of the steady solutions with respect to  disturbances of infinitesimal size, 
denoted by fi and B". Without loss of generality, we can express their time-dependence 
as 

(6, 8) - exp (crt). 

Although the problem is not self-adjoint, it was proved by Vidal & Acrivos (1966) 
that the principle of exchange of stability still holds. When the expansions (2.10) are 
inserted in the linearized perturbed equations, one obtains terms that are proportional 
to the various powers of E .  As stated by Schluter et al. (1966), this suggests that u", 
B" and cr be developed similarly in power series of E .  At each order of approximation 
the domain of stability of the steady solution is obtained by requiring that the real 
part of v is negative; this yields the range of amplitudes E for which the analysis 
applies. 

3. The linear problem 
The momentum and heat equations of the linear steady problem follow directly 

from (2.1)-(2.4), while the boundary conditions are given by (2.5)-(2.8) with a 
superscript (1) on each field variable. Their solutions. are of the form 

(w(l), e ( q  = [ w y Z ) ,  0(1)(~)1 $(%, y), (3.1) 

V ; $ + k 2 $  = 0, (3.2) 

where $(x, y) satisfies the relation (Chandrasekhar 1961) 

with k the horizontal wavenumber. A solution of (3.2) is provided by (Sehliiter et al. 

1966; Busse 1978) N 

@ = Z cn$n, $n = exp (ikn*r)> (3.3) 
n=-N 
n+o 

with lknI2 = k2, r(x,y) is the horizontal position vector and c ,  a complex quantity 
subject to the conditions 

N 

(3.4) 

where c i  is the complex conjugate. 
Solutions (3.3) corresponding to N = 1,2,3 represent two-dimensional rolls, 

rectangular and hexagonal cells respectively. When the notation D = d/dz is used, 
the amplitudes W(l)  and @(l) obey 

(3.5), (3.6) 

(3.7) 

(3.8) 

(D2 - k2)2 W(1) = Ra k2 @(I),  (D2 - k2) @(I) = - W(1), 

with the boundary conditions 

W(1) = DWCl) = @(I) = 0 at = 0, 

W(1) = D2 W(1) + k2&f(O) @(I) = D@(1) + /@(I) = 0 at = 1, 

This problem has been solved by Nield (1964), who used a Fourier-series expansion, 
and by Lebon & Perez-Garcia (1978), who employed a variational method. Neutral 
stability curves M(O)(k) corresponding to various values of Ra and h were established. 
The minimum value 2M, of the function M(O)(k) represents the critical value a t  which 
convection starts. 
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4. The second-order approximation 

(2.10) in (2.1) and (2.4) is given by 
The set of steady inhomogenous equations in power e2 generated by inserting 

V 4 ~ ( 2 )  + Ra Vt O(2) = p1[V;(u(l) * Vu(1) )-axz(u(l).vu(q-a YZ (u(1)-vW(1))], (4.1) 

(4.2) VZO(2) + w(2) = &). VO(1'. 

The equations governing the behaviour of d2) and d2) are of no interest a t  this stage. 
The boundary conditions keep their form (2.5)-(2.8), with superscript ( 2 )  on each 
variable, with the exception of (2.7 b ) ,  which reads 

( a z Z w ( z )  -M(O)VZ 1 1  = ~ ( 1 )  (vz 1 ) I ,  (4.3) 

subscript 1 means that the corresponding quantities are evaluated at the upper 
surface z = 1. 

The condition of satisfying Fredholm's existence theorem leads to non-trivial 
solutions. The existence theorem takes a particular form because the eigenvalue M(O) 
of the homogeneous problem appears in one of the boundary conditions (Friedman 
1956). 

If U = [w(z, y ,  z ) ,  O(x, y ,  z ) ,  O(x, y ,  z = l ) ]  denotes a solution of the set (4.1)-(4.3), 
the solvability condition requires that the adjoint solution U* of the linear problem 
be normal to the inhomogenous part of (4.1)-(4.3). Explicitly, the existence condition 
is 4 , .  

+sj@*q5:[ 1 C c , c , ( ~ ~ ) . V O ~ ~ ) ) ] ~ ~ + ~ ~ ~ D W * $ : M ( ~ )  1 Z ~ ~ V ; 8 g ) ] ~ d S  = 0 

m,  1 m 

(n = - N  > . * * ,  N ) ,  (4.4) 

(4.5) 

where dS denotes a surface element taken at z = 1, while 

u(1) m = (ug), v g ,  2 0 % ) )  = ( P a z z ,  k-2dy*, 1) W("(z) $m(x? y ) .  

The adjoint problem is formulated and solved in the Appendix. 
After insertion of (4.5) in (4.4), one obtains a system of 2N homogeneous equations 

for the 2N+ 1 unknowns c,  and M ( l ) ,  the (2N+ 1)th relation being provided by the 
normalization condition (3.4~). In  the regular case, in which the angles between two 
neighbouring k-vectors are always equal, all the coefficients c, take the same value 
(Schluter et al. 1967; Busse 1978), so that a particular solution of (4.4) is 

(4.6) cPN = ... - c - ~  = C, = ... = cN = +(2N)-i. 

Concerning the values of M ( l ) ,  they take different values according to whether N is 
equal to 1, 2 or 3. 

For rolls (N = 1) and rectangular ( N  = 2) planforms, one finds that M(l)  = 0. For 
hexagonal cells M(') is non-zero and given by 

- 

(4.7) 
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The solutions corresponding to iV > 3 have not been observed experimentally and 
therefore are not analysed in the present work. 

After the solvability condition has been established, it remains to calculate the 
second-order solutions w ( ~ )  and @@). They are of the form 

(w(2 ) ,  @2) )  = (&), H @(2) H ) + (w?), O f ) ) ,  (4.9) 

where (wg), @I) are the solut io~s of the second-order homogeneous problem and are 
formally identical with the first-order solutions w(l) and @(l) ; (wf), Of)) are particular 
solutions and are assumed to consist of two parts: 

(4.10) 

(tug\, 821) are solutions of the non-homogeneous set (4.1), (4.2) and the homogeneous 
left-hand side of (4.3); (&A), Gg)) are solutions of the homogeneous parts of (4.1) and 
(4.2) and the complete equation (4.3). The second-order solutions are derived in Cloot 
(1983), to which the reader is referred for detailed calculations. The values of M@) 
are obtained from the solvability conditions of the third-order solutions. Despite the 
restrictions imposed by the solvability conditions, we are still faced with an infinite 
number of steady solutions, namely the set of all regular solutions consisting of rolls, 
rectangular and hexagonal cells. To remove this degeneracy, we shall examine the 
stability of the solutions with respect to  infinitesimally small perturbations. 

5. Stability of the steady solutions 
In  the present section we restrict the analysis to small disturbances with wavenumber 

k identical with wavenumber k of the basic steady solution. 
Let E(G, 6, G) and e" be the small-amplitude perturbations of the steady solution 

u(u, v, w) and 8 with a time-dependence of the form exp (crt). The disturbances fi and 
0 obey a set of equations that are readily derived by linearizing (2.1)-(2.4). The 
boundary conditions are still given by (2.5)-(2.8) with a tilde on every field variable. 
When the series expansions (2.10) for u and 8 are used, one obtains equations with 
terms proportional to the powers of c .  This has motivated Schluter et al. (1967) to 
develop similarly the growth rate cr and the disturbances E and gin terms of the same 
parameter c :  

cr = + z eicr(i) (5.1) 
i = l  

The coefficients of each power of c generated by inserting (5.1) and (5.2) in the 
equations satisfied by E and e" must vanish identically. As a result, we are faced with 
a sequence of linear inhomogeneous equations setting up an eigenvalue problem for 
the growth rates do, with i = 0,1 ,2 ,  ... . We now discuss briefly each order of 
approximation. 

(5.3) 

(5.4) 

(5.5) 
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which, with the exception of the last terms in (5.3) and (5.4), are the same as the 
equations of the linearized steady problem. As a consequence, by selecting disturbances 
for which do) = 0, which are the most unfavourable perturbations for & = k, the 
solutions G(O) and @O) are of the form (3.1), with $n still given by (3.3), but with 
coefficients En different from c,. 

The existence theorem leads to a system of 2N linear homogeneous equations for 
the 2N unknowns En, namely 

where 

(5.12) 

while Kronecker's symbol S,,,,;, is equal to 1 when the angle between k, and k ,  
is 60' and zero otherwise. An upper asterisk denotes the solution of the adjoint 
problem a t  order 0. The solutions of (5.9) are non-trivial when the determinant formed 
by the coefficients of En vanishes. This yields a relation between d l )  and the 
parameters Ra, P ,  h,  M(O) and M(l) .  

We shall only handle two cases of practical interest, namely N = 1 (rolls) and N = 3 
(hexagons), and determine in both cases the sign of the eigenvalues dl) .  For rolls one 
obtains & = 0, (5.13) 

where the subscript RR means that one examines the stability of steady rolls with 
respect to disturbances themselves taking the form of rolls. The result (5.13) indicates 
that  rolls are marginally stable. 

Suppose now that the basic planform is constituted by hexagonal cells ( N  = 3). The 
vanishing of the characteristic equation leads to the result 

3a 2a a 
B ' B  B 

r7PH = - -, 0, (5.14) 

Since a t  least one of the eigenvalues 
order, hexagons are unstable. 

analysis. 

is positive, it is inferred that, a t  the first 

The next step is to ensure whether this conclusion is confirmed by a higher-order 
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5.3. Second-order analysis 

Repeating the above analysis up to the second order yields the values of a$& and 
a$&. The values of ag& are determined numerically and it is seen that there exist 

(5.15) regions where 

for every mode, indicating that hexagonal cells are stable at the present order of 
investigation. 

For disturbances taking the form of rolls, the question of stability does not receive 
a definite answer. Indeed i t  turns out that 

fYHH = eUg& +€zag& < 0 

C T ~ L  = 0, - E(')/B. (5.16) 

Numerically, it  is seen that ---E(,)/B is always negative, so that the highest eigenvalue 
is a& = 0. As a consequence, it can be said that, up to the second order of 
approximation, rolls are marginally stable with respect to the particular class of 
disturbances that are considered in this section. At this point of the analysis, i t  is 
not possible to predict which structure, either rolls or hexagons, is preferred. A final 
answer can only be obtained by including a larger class of disturbances, as will be 
done in $6. 

6. Stability of steady solutions with respect to disturbances of different 
nature 

6.1. Stability of rolls versus hexagons 

In this section we consider disturbances whose coefficients En may be non-zero for 
eigenvectors k, different from the eigenvalues k ,  pertaining to the steady reference 
solution. In the study of stability of rolls versus hexagons, one has M(l)  = 0 ,  and the 
existence condition of the first-order solutions yields a set of 2N equations in the 2N 
unknowns En. Since the developments are similar to these of $5.2, we reproduce only 
the main results. 

For a relative distribution of the perturbed k, (n = 1,2, . . . , 6) with respect to the 
reference wavenumbers k,, k,  represented on figure 1 ,  the vanishing of the charac- 
teristic determinant leads to 

a& = -a /B ,  0,  a / B .  (6.1) 

Since two of the eigenvalues are of opposite sign, it is clear that rolls are unstable 
versus the above type of disturbances. In figure 1 the wavenumbers of the perturbed 
and the steady solutions are seen to coincide. By selecting other configurations where 
the k, are rotated with respect to the k,, one finds that agk vanishes. However, this 
result cannot modify the earlier conclusion, since one single positive a& is sufficient 
to lead to instability. 

6.2. Stability of hexagons versus rolls 
It can be shown that 

(6.2) 

whatever the relative orientations of the perturbed and the reference wavenumbers. 
The quantity a / B  can be either positive or negative. Stability demands that 

(6.3) 

which is satisfied if E and a&& are of opposite signs. This condition provides a 

a& = agH = a / B ,  

crHR = €a&& < 0,  
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k5 k6 

FIGURE 1.  Distribution of the wavevectors I% of the disturbance with respect to 
the wavevectors k of the reference roll cell. 

supplementary restriction, which complements the limitation placed by inequality 
(5.15) on the allowable values of 6 .  

To be complete, i t  remains to examine the stability of the steady states with respect 
to disturbances of the same nature as the basic solution, but with a wavenumber 
k + k .  

7. Stability with respect to disturbances of wavenumbers k =I= k 
Unlike the results of §§5 and 6, we are no longer entitled to identify the perturbed 

zero-order solutions t E ( O ) ,  #(O) and their adjoints G*, #* with the solutions w(l), e(l) and 
w*, O* of the linear steady problem. Moreover, do) is not necessarily zero. For more 
details the reader is referred to  the Appendix. 

Let us briefly review the various orders of approximation. At the zero linearized 
order, the equations can be written as 

e.u= 0, (7.1) 

where 0 = (G(O), #(O), By)), while 
solutions of (7.1) are still of the form 

is defined by relation (A 19) (see Appendix). The 

with 

At the first order it follows from the Fredholm theorem that 

UPH = a"/B, (7.4) 

where B and a" are given respectively by (5.10) and (5.12) with a tilde on each field 
variable. Stability holds if 

UHH = U&+EU& < 0. (7.5) 

This inequality determines a new domain of allowable values of 6 .  The actual zone 
of stability results from the intersection of the three stability domains defined by 
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inequalities (5.15), (6.3) and (7.5) respectively. The numerical calculations, reported 
in $8, show the existence of a narrow domain of stability. The analysis has been 
pursued up to the second order and a& has been computed; the results are 
commented upon in $8. 

At this point of the analysis, we feel i t  necessary to summarize the contents of the 
five last sections. As a first step ($5  3 and 4), we have determined the steady velocity 
and temperature fields in the close vicinity of the onset of convection. In  the 
remaining sections (5, 6 and 7 ) ,  we have studied the stability of the solutions. First, 
we have examined ($ 5) the stability with respect to infinitesimally small disturbances 
exhibiting the same properties (same configuration and same wavenumber) as the 
reference solution. We have found that rolls as well as hexagons may be stable. We 
have then introduced disturbances with a pattern different from that of the basic 
solution ($6). We have shown that rolls cannot exist because they are unstable with 
respect to ‘hexagonal ’ disturbances. I n  contrast, hexagonal cells are stable with 
respect to perturbations taking the form of rolls. Finally, in $ 7  we have completed 
the proof of stability of hexagonal patterns by considering disturbances with a 
wavenumber different from the wavenumber of the steady solution. The results have 
been established for disturbances taking the form of hexagons with k (disturbance) =#= k 
(reference). The same conclusions hold for disturbed configurations consisting of rolls 
because expressions of a$& and a& are similar to those of ag& and ag&. 

8. Results and discussion 
8.1. The numerical procedure 

The various problems handled in this note are solved by using the Davidov- 
Flechter-Powell minimization technique in connection with the Rayleigh-Ritz 
method. The latter implies that  the governing differential equations are replaced by 
variational principles. Unfortunately, since most of the equations involved are 
non-self-adjoint, it is hopeless to construct ‘exact ’ variational principles. Only 
so-called ‘restricted ’ principles (Finlayson 1972 ; Lebon 1980) can be formulated; the 
governing field equations are recovered as Euler-Lagrange equations, but at the cost 
of freezing, during the variational procedure, some variables in the functional to be 
extremalized. An example of restricted variational equation is provided by 

0 0  

6I( w, 0, w, 0) = 0, 

where 6 is the usual variational symbol while 0 over a character indicates that the 
corresponding quantity is not varied. Despite their restricted character, one can use 
the classical variational methods, like the Rayleigh-Ritz method. The latter consists 
of expanding the field variables, e.g. W ( z )  and 0 ( z ) ,  in the form 

m n 

i=l i=l 
w = x a&(z),  0 = I: b i g p ,  (8.21, (8.3) 

where ai and bi are unknown constants while fi(z) and g,(z) are a priori given functions 
selected here as 

fi = zz(l-z)T;-l, gi = z(l-+z)T;-l, (8.41, (8.5) 

which satisfies the essential boundary conditions, T? are the modified Tchebyshev 
polynomials. The procedure is traditional and will not be detailed here. Convergence 
is attained with a maximum of six terms in the expansions (8.2) and (8.3). 
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k 
FIGURE 2. The first-order Marangoni number M(l )  versus the wavenumber k for P = 7 ,  h = 0 

and various values of the Rayleigh number Ra. 

The calculations have been performed for several values of the Rayleigh number 
ranging from 

three values of the Prandtl number, 

Ra = - 500 to Ra = 669, 

P = 7,70,500; 

and two values of the Biot number, 

h = 0 , 1 .  

The negative values of Ra correspond to fluid layers either heated from above or 
heated from below, with a negative coefficient of thermal expansion. The value 
Ra = 669 is characteristic of a layer with a critical Marangoni number equal to zero 
(Nield 1964). The values 7 and 500 of the Prandtl number describe respectively water 
and a viscous oil; P = 70 is an intermediate value. The two values h = 0 and h = 1 
of the Biot number define an adiabatically insulated and a weakly conducting upper 
surface respectively. 

8.2. First-order results 

The values of M(O)(k) have been calculated earlier (Nield 1964; Lebon & Perez 
1980), so that our first objective is to  determine M ( l ) ( k ) .  

Plots of M ( l ) ( k )  versus the wavenumber k for h = 0 and various values 
of the Rayleigh number are shown on figures 2 and 3. For Ra-values such that 
- 500 < Ra < 300 (figure 2) M(l)  decreases monotonically and changes its sign when 
12 is increased beyond a value k ,  larger than the critical value k ,  predicted by the 
linear theory. For 400 < Ra < 669 figure 3 shows vertical asymptotes occurring a t  
values k,, smaller than k ,  for Ra < 600, and larger than k ,  for Ra-values exceeding 
600. The behaviour of dl) is similar to that of M ( l )  with change of sign and asymptotes 
a t  k, values of the wavenumber. Clearly, our model will fail for k-values near k,, 
where M(l )  tends to infinity. 
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Ra = 600 
Ra = 669 

_ _ _  

FIGURE 3. The first-order Marangoni number M(') versus the wavenumber k for P = 7 ,  h = 0 
and various values of the Rayleigh number Ra. 

8.3. Xecond-order results (f = k )  

It was stated in $ 7  that  steady rolls are unstable. Therefore our stability analysis 
will exclusively concern hexagonal solutions. Up to the second order in e, the rate 
of growth of the disturbances is given by 

VHH = €(cT&)H+€Vg)H). (8.6) 

Imposing gHH < 0, one finds the range of allowable values of 6 corresponding to 
stability. The regions of stable convective hexagons are represented by shaded areas 
on figure 4. 

The values of e versus k, shown on figure 4, obey the condition (6.3) to be of opposite 
sign to a$&, as imposed by the stability of hexagons versus rolls. The stability regions 
are located a t  one side of the asymptotes I% = kD: a t  the left for Ra < 500, and a t  
the right for Ra > 600. When buoyancy effects overcome surface-tension effects 
(which corresponds to values of Ra 3 600), i t  is seen that the supercritical wave- 
numbers are larger than the critical wavenumber k,. This remains true in the limiting 
case of a zero critical Marangoni number (Ra = 669). However, when surface effects 
become predominant (Ra < 500), the situation is reversed and the supercritical 
wavenumbers are smaller than k,. 

8.4. Xecond-order results (& + k )  

Unlike the case f = k ,  the growth rate do) is no longer equal to zero. A numerical 
study shows that the system is stable with respect to modes k satisfying 

Mac I i > Mac I kref,  



Nonlinear analysis of Be'nard-Marangoni convection 459 

E 

1 

10-1 

10- 

10- 

I 

' I  I 

FIGURE 4. The stability regions in the ( E ,  k)-plane for P = 7 ,  h = 0 and 
various values of the Rayleigh number. 

because in that case do) < 0. Otherwise one has do) > 0, and a higher-order analysis 
is necessary. The calculations have been extended up to the second order, and the 
corresponding stability ranges are drawn on figure 5 .  Whereas the upper line e,,,(k) 
is unaffected by the order of approximation, the lower curve emin(k) is appreciably 
lowered by passing from the first to the second order. For comparison, we have also 
represented the curve s,,,(k) corresponding to the case k = k. 

8.5. Stability domains in the (Ma,  k)-plane 

The actual stability domain results from the intersection of three stability domains 
corresponding to three different classes of disturbances, namely disturbances with 
k-vectors equal to  those of the steady motion, disturbances with &-vectors different 
from those of the steady motion, and disturbances with coefficients E, different from 
the c,  of the steady state. 

The stability ranges in the (Ma,  k)-plane are obtained by replacing, in 

Ma = No) +e(k)  M(') + [e (k)I2  M2), (8 .7 )  

the quantity e(k)  by its minimum and maximum allowable values respectively. Unless 
otherwise stated, the Prandtl and Biot numbers have been fixed equal to  7 and 0 
respectively. 
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FIGURE 5.  Comparison of the stability domains corresponding to the first- and second-order 
analyses respectively. P = 7, k = 0. 

Bearing in mind that for rolls M(l)  = 0, whereas for hexagons M(l)  is seen to be 
numerically negligible with respect to M @ ) ,  i t  is justifiable to write 

The magnitude of Ma(2) (up to 1O1O) ensures the smallness of the parameter c ,  whose 
values run from 10-1 to lo-'. 

A qualitative picture of the stability range of hexagonal cells is represented on 
figure 6(a ,b)  for Ra = 669 and 600. The allowed states of convection are located in 
regions where k > k,. As mentioned earlier, stable cells are found in regions where 
k < k, when Ra is decreased. This is illustrated on figure 7 (a ,  b )  where Ra takes the 
values 500 and 400. When surface effects become dominant (Ra = 100 and Ra = 0), 
the stability range is shifted anew to regions where k > k, (see figures 8a, b) .  Moreover, 
a new phenomenon is displayed, namely the occurrence of a subcritical instability 
where Ma < M(O), i.e. where the linear theory predicts a state of rest. Although the 
subcritical band is rather narrow, i t  enlarges with increasing k-values. The presence 
of a region of subcriticality has also been detected for negative Ra values. 

We now fix P and Ra but allow h to  vary. It is observed on figure 9 that  for Ra = 500 
and P = 70 the stability zones grow with h and are displaced towards smaller values 
of Ic when the Biot number is increased. Clearly, an increase of the heat exchange 
between the fluid layer and its environment increases the sizes of the convective cells. 

The influence of Prandtl number is displayed in figure 10. By increasing P one 
reduces the extent of the stability domain. A similar behaviour was predicted by 
Busse (1978) for a layer with an upper stress-free surface in the range of intermediate 
and large Prandtl numbers. This effect can be tentatively interpreted by recalling 
that an increase of P reinforces viscous dissipation and consequently the stability of 
the basic quiescent state. Therefore, in order to get and maintain convection, greater 
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FIGURE 6. Domain of stable convective hexagons for P = 7,  h = 0, Ra = 669 (a)  and Ra = 600 (b). 
The lower curve is the marginal stability curve W ( k ) .  

values of the velocity are required to balance the thermoviscous damping. Since 
high-velocity fields are more sensitive to  disturbances, one can reasonably expect that 
the area of stability is the smallest for the largest P. 

Before closing this discussion, we wish to make two additional comments. Although 
it is implicitly assured that c is non-zero, one observes that the stability domains are 
confined below by the neutral stability curves M(O)(k). Certainly, cmi,(k) does not 
vanish, but is generally so small that it cannot be represented on a picture. 

It may be asked whether third- and higher-order terms in (2.10) do not alter the 
above conclusions. To answer this question, i t  is necessary to study the accuracy of 
the second-order approximation. This task is achieved by considering with Malkus 
& Veronis (1966) and Busse (1967) the convection heat transport H given by 

H =  OWdz, s,' 
as a measure of the quality of the approximation. It is assumed that the second order 
of approximation is satisfactory when, by adding one term in the expansion of H(,,, 
the latter differs from H(3)  by less than 1 yo. This allows us to compute the range of 
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FIGURE 7. Domain of stable convective hexagons for P = 
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500 (a )  and Ra = 400 

Mu-values for which a good qualitative description of the flow is expected. Substi- 
tution of (2.10) in (8.8) yields a t  the second and third order respectively 

H( 2) = €2N(2), H@) = €ZN@) + €3N(3), (8.9) 
with 

N(2) = s,’ @(I) w(1) dz, N(3) = Jol (@(I) W(2) + @(2) w(1)) dz. (8.10) 

The values of N(2) ,  N(@ and e for h = 0 and different values of Ru, P and k are 
presented in table 1 .  We have also reported the range of Mu-values corresponding 
to a relative error (Z?(3) -H(2)) /H(2)  less than 1 yo. The results indicate that the 
supercritical range may extend to Mu-values considerably above the critical value. 
This finds its origin in the large values of Mu@). Moreover, it is worth mentioning 
that large Mu-values are not anomalous, and are typical of fluid layers with a common 
thickness and a reasonable temperature drop, as confirmed by table 2, where all the 
values correspond to Ru = 500. 
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FIGURE 8. Domain of stable convective hexagons for P = 7, h = 0, Ra = 100 (a )  and Ra = 0 ( b ) .  
A region of subcritical instability is displayed. 
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FIQURE 9. Influence of the Biot number on the extent on the stability 
domain in the (Ma,  k)-plane for P = 70, Ra = 500. 
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FIQURE 10. Influence of the Prandtl number on the extent of the stability domain 
in the (Mu, k)-plane for Ru = 500 and h = 0. 
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Ra 

0 
100 
400 
500 
500 
500 
600 
669 

P k 

7 4.5 
7 4.5 
7 1.3 
7 1.6 

70 1.6 
500 1.6 

7 2.6 
7 2.6 

N(2) 

4.5 x 10-3 
5 x 10-3 

107.5 
32.9 
32.9 
32.9 

1.89 
4 

N(3) 

5.9 x 10-5 
3.6 x 10-5 

-61.2 
-31.8 
-23.8 
- 24 
-0.385 
-1.14 

& 

0.15 
0.15 

8.7 x 10-3 
1.87 x 
1.38 x 
1.37 x 
4.9 x 10-2 
3.5 x 10-2 

AMa 

168.S171.5 
160.2-162.8 

51-9250 
27-3000 
27-152 
27-44 
1.5523 

5 .5264 

TABLE 1. Heat-transport coefficients and Ma-range corresponding to an error less than 1 yo 

P Ma h AT(") d (cm) 

7 (water) 5 x 103 0 0.8 0.4 
104 0 2.27 0.3 

3 x 104 1 8 0.2 
500 (silicone oil) 350 0 5 0.4 

TABLE 2. Characteristic Ma-values 

Scanlon & Segel Rosenblat et al. Present work 
( P =  a) P = 0.1 P=cO P = 7  

Ma- M i  
2.3 yo 0.18% 1.4% 0.3% (k = 4) 

Mi 

TABLE 3. Extent of the subcritical domain (Ra = 0) 

9. Comparison with other work, and final comments 
Of course, i t  is desirable to compare our predictions with other theoretical results 

and experimental observations. Unfortunately, reliable results exist only in two 
limiting cases, namely Ma = 0, Ra + 0 and Ra = 0, Ma + 0. 

As mentioned earlier, Scanlon & Segel (1967) were the first to propose a nonlinear 
approach to Marangoni's problem. Using a very crude model, they found stable 
hexagonal cells within a rather wide supercritical region and a small subcritical band. 
The existence of a region of subcritical instability has recently been confirmed by 
Rosenblat et al. ( 1982), who examined nonlinear Marangoni convection in side-bounded 
layers. Their results together with these of Scanlon and Segel are compared with our 
own results in table 3. 

It appears that  the three analyses are in satisfactory agreement. Unlike the case 
Ma + 0, Ra = 0, the case Ma = 0, Ra + 0 has been treated in numerous papers. Of 
particular interest to us is the work of Schluter et al. (1965), because, like them, we 
use the Gorkov-Malkus-Veronis iterative procedure. Schluter et al. consider a fluid 
layer of infinite horizontal extent, confined either between two rigid surfaces, two free 
surfaces, or a rigid and a free surface; moreover each face is supposed to  be perfectly 
heat-conducting ( h  = a). It is shown that rolls are the only stable configuration, with 
a supercritical wavenumber greater than k, .  
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FIGURE 11. Regions of (Ru, Mu, K)-space. The curves represent the marginal stability curves 
obtained by projection either into the (Mu, k)-plane or into the (Ru, k)-plane. 

In  the present analysis it is concluded that hexagons are the preferred convection 
patterns, while rolls are unstable. This is by no means in contradiction with the results 
of Schliiter et al. as illustrated on figure 11 where the stable states are represented on 
a three-dimensional graph (Ma ,  Ra,  k). The thick curves are the marginal stability 
curves obtained by projection onto the (Ma,  k)- and (Ra ,  k)-planes respectively. 
Clearly it appears that  our theory covers sectors which are different from those treated 
by Schluter et al. They examine only situations in the (Ra,k)-plane with Ma fixed 
and set equal to zero, while we study more particularly what happens in the 
(Ma,  k)-planes for various values of Ra. 

Concerning experimental confirmation, let us first mention Block's (1956) observ- 
ation that in a fluid layer heated from above-to which corresponds a negative 
Rayleigh number - the motion sets up in the form of hexagonal cells, in agreement 
with our predictions. I n  order to make comparisons with other experimental results, 
we have calculated the horizontal component uh = (u2 + v2)i of the velocity at the 
upper surface. The results for thin layers of water (P = 7) and silicone oil (P = 500) 
submitted to a temperature drop of 1 "C are reported in table 4 and compared with 
experimental values (ESA 1981) : the experimental and theoretical values are of the 
same order of magnitude. 

A problem of great concern during recent decades has been the variation of the 
supercritical wavenumber, i.e. the size of the convective cell, with Rayleigh number. 
.Although most theories predict a supercritical wave number k larger than the critical 
value L, (e.g. Schliiter et al. 1965), no stable flow with a wavenumber k > k, seems 
to have been observed (Koschmieder 1981). I n  the present analysis, both situations 
with k < k, and k > k, are encountered. When Ra lies in the intermediate range 
100 < Ra < 400, stable cells are characterized by wavenumber smaller than k,. 
However, in the extreme regions where either the buoyancy effect (Ma  = 0) or the 
surface-tension effect (Ra = 0) dominates, stable wavenumbers are larger than k,. No 
conclusive argument explaining this behaviour can be advanced. 
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Water (Ra = 0 )  Silicone oil (Ra = 500) 

u,(theoretical) u,(experimental) u,(theoretical) u,(experimental) 
k m/s m/s k m/s loT2 m/s 

3.5 16 
4.5 10 
5 1.5 
6.5 7.7 

1.5 1.6 

1.7 0.7 
1.8 0.3 

10 1.6 6.7 00.1 < u, < 10 
- 

- 

TABLE 4. Horizontal velocity at the upper surface 

It must be realized that the present model is unable to answer some important 
questions raised by Marangoni instability. Our treatment is based on a perturbation 
technique and provides only solutions for limited ranges of Mu. The present analysis 
no longer permits us to distinguish the flow direction. It has been recognized (e.g. 
Palm 1975) that the temperature dependence of the viscosity is the essential factor 
in the determination of the sense of the motion. But this demands that we give up 
the Boussinesq approximation, which the present investigation relies upon. Moreover, 
we cannot provide a mechanism of selection among the set of allowable wavenumbers, 
as the layer is assumed of infinite extent. Finally, surface deflections have been 
neglected. 

Despite its limitations, we venture to think that the present model will contribute 
to a better understanding of the Marangoni effect. It is also the hope that this work 
will instigate more laboratory observations. 

Appendix 
A.l. The adjoint problem of the linearized basic problem 

The first-order equations may be written as 

L U =  0, (A 1 )  

(A 2) 
V4 RaV: 0 where 

L = (  azzll 1 v2 0 -M(O)V; 0 ), .=is). 
The boundary condition involving the eigenvalues M(O) has been included in the 
operator L. The remaining boundary conditions are 

The operator L* adjoint to L is defined by 

(U* ,  LU) = ( U ,  L*U*), (A 5) 

where U*[w*, 8*, aZw*1,] is the adjoint eigenvector, the solution of 
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By integration by parts of the left-hand side of ( A  5) and use of (A 3) and (A 4), one 
obtains 

(A 7) 
1 0 

L* = RaV; V2 0 
v4 0 - (a, + h) ,  -M(O)8, Vtll 

with the corresponding adjoint boundary conditions 

W* = a,w* = 8* = 0 at z = 0, 

w* = azzw* = 0 a t  z = 1 .  

In analogy with the linear problem set up in $3, one expresses the solution of (A 2) 
in the form 

w* = W*@)  r$+(x, y), 

8* = @*(z) r$+(x, y), 

(A 10) 

(A 11) 

where $+ has been defined by (4.7) 

governing the behaviour of the amplitude W* and @*, namely 
After substitution of (A 10) and (A 11) in (A 6),  one obtains the equations 

(D2  - k2)’ w2* + @* = 0, 

(D2-k2)@*-Rak2W* = 0, 

with the boundary conditions 

Equations (A 12) and (A 13) can be obtained as Euler-Lagrange equations of the 
variational principle 

The boundary conditions 

D2W* = 0 at z = 0, D2W* = D@*+h8*-M(O)k2DW* = 0 at z = 1 (A 17) 

appear as natural conditions of the variational equation (A 16). The zero above D W* 
means that the corresponding quantity must be frozen during the variational 
procedure. This is the reason why the variational principle (A 16) is not an ‘exact’ 
one but must be classified as a ‘restricted’ variational principle (Finlayson 1972; 
Lebon 1981). Despite this restricted character, one is allowed to use the classical 
variational methods, like the Rayleigh-Ritz technique. 

A.2. The adjoint problem of the perturbed problem 

The adjoint solution of the perturbed problem is similar to that presented in SA.1: 
it suffices to put a tilde on each quantity. Slight modifications arise when the 
perturbed wavenumber k differs from the reference wavenumber k. In this case do) 
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is not zero and the problem must be reconsidered. Instead of (A 2), the linear operator 
is then 

0 -M(O)V2 

V 4  - P 1 d 0 ) V 2  RaV: 
i=( 1 

a&Il 
and it is found that the adjoint operator 

1 

with the adjoint boundary conditions 
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